RSS Feed Source: Science Daily

As the world shifts toward sustainable energy sources, ‘green hydrogen’ – hydrogen produced without emitting carbon – has emerged as a leading candidate for clean power. Scientists have now developed a new iron-based catalyst that more than doubles the conversion efficiency of thermochemical green hydrogen production.

Click this link to continue reading the article on the source website.

RSS Feed Source: Science Daily

In a major advancement for sustainable construction, scientists have created a cement-free soil solidifier from industrial waste. By combining Siding Cut Powder and activated by Earth Silica, an alkaline stimulant from recycled glass, scientists produced a high-performance material that meets compressive strength standards exceeding the 160 kN/m construction-grade threshold and eliminates arsenic leaching through calcium hydroxide stabilization. The technology reduces landfill volumes and carbon emissions, offering a circular solution for infrastructure development worldwide.

Click this link to continue reading the article on the source website.

RSS Feed Source: Science Daily

Researchers supported by the U.S. National Science Foundation have provided a new understanding of how and where learning occurs in the brain. The two-part finding has implications for understanding and treating neurodegenerative diseases like Alzheimer’s and other dementias, which impact more than 7 million people in the United States and account for $384 billion in health and long-term care costs, as well as for enhancing neural networks.

“Identifying how the brain actually forms new connections and learns is a question at the frontier of neuroscience,” said Paul Forlano, program officer in the NSF Directorate for Biological Sciences. “Knowing that influences our understanding of how we interact with our environment and pick up on and respond to cues, which opens the door to a range of new fundamental and applied research.”

The researchers, led by Kishore Kuchibhotla, assistant professor at Johns Hopkins University, used brain imaging to determine when mice learned a new skill. The imaging reinforced previous work, showing that mice learned quickly and that those that continued to make errors weren’t still learning; they were experimenting. The difference between mistakes and testing the rules was evident in changes in the neural activity that the researchers saw in the mice.

Kuchibhotla said the distinction between the brain dynamics in learning and the dynamics involved in using that skill could be mimicked in having a memory

Click this link to continue reading the article on the source website.