RSS Feed Source: MIT Technology Review

The US- and UK-based company Quantinuum today unveiled Helios, its third-generation quantum computer, which includes expanded computing power and error correction capability. 

Like all other existing quantum computers, Helios is not powerful enough to execute the industry’s dream money-making algorithms, such as those that would be useful for materials discovery or financial modeling. But Quantinuum’s machines, which use individual ions as qubits, could be easier to scale up than quantum computers that use superconducting circuits as qubits, such as Google’s and IBM’s.

“Helios is an important proof point in our road map about how we’ll scale to larger physical systems,” says Jennifer Strabley, vice president at Quantinuum, which formed in 2021 from the merger of Honeywell Quantum Solutions and Cambridge Quantum. Honeywell remains Quantinuum’s majority owner.

Located at Quantinuum’s facility in Colorado, Helios comprises a myriad of components, including mirrors, lasers, and optical fiber.

Click this link to continue reading the article on the source website.

RSS Feed Source: MIT Technology Review

This year, we’ve seen a real-time experiment playing out across the technology industry, one in which AI’s software engineering capabilities have been put to the test against human technologists. And although 2025 may have started with AI looking strong, the transition from vibe coding to what’s being termed context engineering shows that while the work of human developers is evolving, they nevertheless remain absolutely critical.

This is captured in the latest volume of the “Thoughtworks Technology Radar,” a report on the technologies used by our teams on projects with clients. In it, we see the emergence of techniques and tooling designed to help teams better tackle the problem of managing context when working with LLMs and AI agents. 

Taken together, there’s a clear signal of the direction of travel in software engineering and even AI more broadly. After years of the industry assuming progress

Click this link to continue reading the article on the source website.

RSS Feed Source: MIT Technology Review

Physicists have uncovered how direct atom-atom interactions can amplify superradiance, the collective burst of light from atoms working in sync. By incorporating quantum entanglement into their models, they reveal that these interactions can enhance energy transfer efficiency, offering new design principles for quantum batteries, sensors, and communication systems.

Click this link to continue reading the article on the source website.