RSS feed source: National Science Foundation

Chemists funded by the U.S. National Science Foundation have developed a new process to synthesize a plant-based compound that shows effectiveness against triple-negative breast cancer cells. According to the American Cancer Society, triple-negative breast cancer is one of the most aggressive types of breast cancer and accounts for 10-15% of all breast cancer cases. The process also increases the compound’s potency against these cancer cells and provides a method for it to be mass-produced to enable further testing as a potential treatment.

The new process can also be used broadly to help discover new medicines by synthesizing and testing other complex organic compounds. The findings were achieved by Emory University researchers and published in The Journal of the American Chemical Society.

The compound — called phaeocaulisin A — is extracted from the flowering plant Curcuma phaeocaulis, a relative of ginger and turmeric used for centuries in traditional medicine.

“We not only efficiently replicated a complex natural product, we also improved upon it by turning it into a more potent compound,” says Mingji Dai, professor of chemistry and co-lead of the study.

“It is only the first step in a long process,” says Yong Wan, professor of pharmacology and chemical biology and study co-lead. “But the new analogue of phaeocaulisin A we have reported shows promising efficacy against triple-negative breast cancer cells, which are very aggressive and

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

A new computational tool developed with support from the U.S. National Science Foundation could greatly speed up determining the 3D structure of RNAs, a critical step in developing new RNA-based drugs, identifying drug-binding sites and using RNAs in other biotechnology and biomedicine applications.

The tool, NuFold, leverages state-of-the-art machine learning techniques to predict the structure of a wide variety of RNA molecules from their sequences. This new capability will allow researchers to visualize what a given RNA structure could look like based on its sequence and identify its potential use in drug delivery, disease treatment and other applications.  The research leading to NuFold was published in Nature Communications.

RNAs are critical biological molecules — encoding information, like DNA, and performing cellular functions, like proteins — but relatively few RNA structures have been determined through experimentation thus far, which severely limits understanding of their functions. For example, RNAs in the NSF-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) represent only about 3% of total entries. Experimentally determining RNA structures is often time-consuming and costly. By providing a path to reliably predicting RNA structure from sequence, NuFold could greatly expedite the discovery of RNA function and enable quicker development of RNA-based therapeutics and technologies.

Credit: Daisuke Kihara, Purdue University. Figure taken from the Nufold

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

Researchers supported by the U.S. National Science Foundation have discovered four tiny exoplanets orbiting Barnard’s star, a red dwarf at the center of the nearest single-star system to Earth. Using a specialized instrument mounted on the NSF-supported Gemini North Telescope in Hawaii, the team detected “wobbles” in the motion of Barnard’s star by observing subtle shifts in the color of its light, indicating the gravitational pull from nearby exoplanets. The planets’ surfaces are too hot to support life as we know it.

The researchers made their discovery using the M-dwarf Advanced Radial velocity Observer Of Neighboring eXoplanets (MAROON-X) spectrometer, which is designed to detect exoplanets. Their results were published in The Astrophysical Journal Letters and show promise for finding and confirming more small planets around other red dwarf stars, which are numerous in the universe.

“The U.S. National Science Foundation is collaborating with the astronomy community on an adventure to look deeper into the universe to detect planets with environments that might resemble Earth’s,” says Martin Still, NSF program director for the International Gemini Observatory. “The planet discoveries provided by MAROON-X mounted on Gemini North provide a significant step along that journey.”

Most of the planets previously discovered in the Milky Way galaxy are much larger than Earth, making detecting these relatively tiny planets a fundamental step towards a more complete understanding of planet populations.

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

Although a leopard cannot change its spots, new research funded by the U.S. National Science Foundation uses the principles that govern patterns like leopard spots to understand biological processes at the nanoscale. The research, which combines physics, biology and theories first suggested by famed code breaker Alan Turing, increases knowledge of protein nanocluster formation and could enhance understanding of the causes of Emery-Dreifuss muscular dystrophy (EDMD) and lead to possible treatments.

The project probes the formation of nanoclusters made of a protein called emerin, which plays a role in the structure and function of the membrane around a cell’s nucleus. These clusters are extremely important in mechanotransduction, the process by which cells respond to mechanical forces like stretching or pressure. When mechanotransduction fails, it can lead to diseases like EDMD and other forms of muscular dystrophy. Understanding how emerin molecules form nanoclusters will aid in deciphering how the process can be disrupted and how disruptions can lead to disease.

While the way in which proteins come together has been studied for some time, the new research uses biophysical concepts to understand the biological processes. Specifically, the researchers used rules that control the formation of patterns proposed by Turing. Turing’s work provided mathematical rules that govern the formation of nanoclusters, working at a vastly different scale than leopard spots or zebra stripes.

The research was led

Click this link to continue reading the article on the source website.