RSS feed source: US Computer Emergency Readiness Team

Summary

Note: This joint Cybersecurity Advisory is part of an ongoing #StopRansomware effort to publish advisories for network defenders that detail various ransomware variants and ransomware threat actors. These #StopRansomware advisories include recently and historically observed tactics, techniques, and procedures (TTPs) and indicators of compromise (IOCs) to help organizations protect against ransomware. Visit stopransomware.gov to see all #StopRansomware advisories and to learn more about other ransomware threats and no-cost resources.

The Federal Bureau of Investigation (FBI), Cybersecurity and Infrastructure Security Agency (CISA), and the Multi-State Information Sharing and Analysis Center (MS-ISAC) are releasing this joint advisory to disseminate known Ghost (Cring)—(“Ghost”)—ransomware IOCs and TTPs identified through FBI investigation as recently as January 2025.

Beginning early 2021, Ghost actors began attacking victims whose internet facing services ran outdated versions of software and firmware. This indiscriminate targeting of networks containing vulnerabilities has led to the compromise of organizations across more than 70 countries, including organizations in China. Ghost actors, located in China, conduct these widespread attacks for financial gain. Affected victims include critical infrastructure, schools and universities, healthcare, government networks, religious institutions, technology and manufacturing companies, and numerous small- and medium-sized businesses.

Ghost actors rotate their ransomware executable payloads, switch file extensions for encrypted files, modify ransom note text, and use numerous ransom email addresses, which has led to variable attribution of this group over

Click this link to continue reading the article on the source website.

RSS feed source: US Computer Emergency Readiness Team

Microsoft announced today that it has made significant progress in its 20-year quest to make topological quantum bits, or qubits—a special approach to building quantum computers that could make them more stable and easier to scale up. 

Researchers and companies have been working for years to build quantum computers, which could unlock dramatic new abilities to simulate complex materials and discover new ones, among many other possible applications. 

To achieve that potential, though, we must build big enough systems that are stable enough to perform computations. Many of the technologies being explored today, such as the superconducting qubits pursued by Google and IBM, are so delicate that the resulting systems need to have many extra qubits to correct errors. 

Microsoft has long been working on an alternative that could cut down on the overhead by using components that are far more stable. These components,

Click this link to continue reading the article on the source website.

RSS feed source: US Computer Emergency Readiness Team

NSF Financial Assistance awards (grants and cooperative agreements) made on or after October 1, 2024, will be subject to the applicable set of award conditions, dated October 1, 2024, available on the NSF website. These terms and conditions are consistent with the revised guidance specified in the OMB Guidance for Federal Financial Assistance published in the Federal Register on April 22, 2024.

Click this link to continue reading the article on the source website.

RSS feed source: US Computer Emergency Readiness Team

Synopsis

NSF-supported science and engineering research increasingly relies on cutting-edge infrastructure. With its Major Research Instrumentation (MRI) program and Major Multi-user Facilities (“Major Facilities”) projects, NSF supports infrastructure projects at the lower and higher range of infrastructure project costs, Foundation-wide, across science and engineering research disciplines. The Foundation-wide Mid-scale Research Infrastructure opportunity is intended to provide NSF with an agile, Foundation-wide process to fund experimental research capabilities in the mid-scale range between MRI and Major Multi-user Facilities.

NSF defines Research Infrastructure (RI) as any combination of facilities, equipment, instrumentation, or computational hardware or software, and the necessary human capital in support of the same. Major facilities and mid-scale projects are subsets of research infrastructure. The NSF Mid-scale Research Infrastructure-1 Program (Mid-scale RI-1) supports either design activities or implementation of unique and compelling RI projects. Mid-scale implementation projects may include any combination of equipment, instrumentation,

Click this link to continue reading the article on the source website.