RSS feed source: National Science Foundation

Researchers supported by the U.S. National Science Foundation have discovered four tiny exoplanets orbiting Barnard’s star, a red dwarf at the center of the nearest single-star system to Earth. Using a specialized instrument mounted on the NSF-supported Gemini North Telescope in Hawaii, the team detected “wobbles” in the motion of Barnard’s star by observing subtle shifts in the color of its light, indicating the gravitational pull from nearby exoplanets. The planets’ surfaces are too hot to support life as we know it.

The researchers made their discovery using the M-dwarf Advanced Radial velocity Observer Of Neighboring eXoplanets (MAROON-X) spectrometer, which is designed to detect exoplanets. Their results were published in The Astrophysical Journal Letters and show promise for finding and confirming more small planets around other red dwarf stars, which are numerous in the universe.

“The U.S. National Science Foundation is collaborating with the astronomy community on an adventure to look deeper into the universe to detect planets with environments that might resemble Earth’s,” says Martin Still, NSF program director for the International Gemini Observatory. “The planet discoveries provided by MAROON-X mounted on Gemini North provide a significant step along that journey.”

Most of the planets previously discovered in the Milky Way galaxy are much larger than Earth, making detecting these relatively tiny planets a fundamental step towards a more complete understanding of planet populations.

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

Synopsis

The Science and Technology Centers (STC): Integrative Partnerships program supports exceptionally innovative, complex research and education projects that require large-scale, long-term awards. STCs focus on creating new scientific paradigms, establishing entirely new scientific disciplines, and developing transformative technologies which have the potential for broad scientific or societal impact. STCs conduct world-class research through partnerships among institutions of higher education, national laboratories, industrial organizations, other public or private entities, and via international collaborations, as appropriate. They provide a means to undertake potentially groundbreaking investigations at the interfaces of disciplines and/or highly innovative approaches within disciplines. STCs may involve any area of science and engineering that NSF supports. STC investments support the NSF vision of creating and exploiting new concepts in science and engineering and providing global leadership in research and education.

Centers provide a rich environment for encouraging scientists, engineers, and educators to take risks

Click this link to continue reading the article on the source website.