RSS feed source: National Science Foundation

A team of researchers led by the recipient of a U.S. National Science Foundation Faculty Early Career Development grant has developed a new storage method for protein-based drugs that could potentially eliminate the need for refrigeration of important medicines. Using an oil-based solution and a molecule acting as a coating to enclose the proteins in these drugs, researchers demonstrated a technique to prevent the proteins from degrading rapidly — a protection that traditionally requires refrigeration.

The research is led by Scott Medina at Pennsylvania State University and published in Nature Communications. It demonstrates a possible practical application to eliminate the need to refrigerate hundreds of life-saving medicines like insulin, monoclonal antibodies and viral vaccines.

The work could eventually reduce the cost of refrigerating such drugs throughout the supply chain and enable greater use of protein-based therapies where constant refrigeration isn’t possible, including military environments. 

“Over 80% of biologic drugs and 90% of vaccines require temperature-controlled conditions. This approach could revolutionize their storage and distribution, making them more accessible and affordable for everyone,” says Medina.

To accomplish this, researchers created an oil-based solution using perfluorocarbon oil, finding that it was naturally sterile and could not be contaminated by bacteria, fungi or viruses, which require a water-based environment to grow and survive.

The team also developed a surfactant — a molecule that coats the surface of the protein — to shield the surface of the protein in a way that would allow it to evenly disperse throughout the solution. The surfactant created a

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

Supported by multiple grants from the U.S. National Science Foundation, researchers have comprehensively characterized the properties of a unique type of skeletal tissue with the potential for advancing tissue engineering and regenerative medicine. The tissue, called “lipocartilage,” is packed with fat-filled cells that provide stable internal support so the tissue remains soft and springy like bubbled packaging material.

The fat-filled cells in lipocartilage are called “lipochondrocytes,” which were first recognized in 1854 by Franz Leydig. The tissue is unlike most other types of cartilage, which rely on an external cellular matrix for strength. Led by the University of California, Irvine, the research team showed how lipocartilage cells create and maintain their own lipid reservoirs, remaining constant in size. Unlike other fat cells, lipochondrocytes never shrink or expand in response to food availability. The study was published in Science.

“Lipocartilage’s resilience and stability provide a compliant, elastic quality that’s perfect for flexible body parts such as earlobes or the tip of the nose, opening exciting possibilities in regenerative medicine and tissue engineering, particularly for facial defects or injuries,” says Maksim Plikus, a UC Irvine professor and author on the paper.

“Currently, cartilage reconstruction often requires harvesting tissue from the patient’s rib — a painful and invasive procedure. In the future, patient-specific lipochondrocytes could be derived from stem cells, purified and used to manufacture living cartilage tailored to

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

The event, Additive Construction – The Path to Standardization Continues, will bring together industry and academic stakeholders to discuss gaps in the current standard documents and how the gaps can be filled. Building on previous engagements, this

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

Lost Radiography Device

Print View Posted on: 13 March 2025

Event Date: 06 March 2025 Event Type: Radiation Source Event Location: United States of America, Mentone, Texas / National Inspection Services, LLC INES Rating: 2 (Provisional)

On March 6, 2025, a radiography crew working approximately 16 km (10 mi) east of Mentone, Texas, reported losing a SPEC 150 exposure device containing a 3.53 TBq (95.4 Ci) iridium-192 source. A trainee set the exposure device on the back of the truck but failed to secure the device in the truck. The source was in the fully shielded position. Shortly after leaving the work site, the radiographers realized the exposure device was no longer in the back of the truck. The radiographers retraced the path they had traveled but did not find the device. Two other trucks passing that way were stopped but the drivers had not seen the device. The licensee has offered a cash award for the return of the device and Texas state authorities issued a press release to alert the public (https://www.dshs.texas.gov/news-alerts/dshs-notifies-public-missing-radiographic-camera-loving-county). U.S. Department of Energy Radiological Assistance Program teams have assisted the licensee and Texas state authorities

Click this link to continue reading the article on the source website.