RSS feed source: National Science Foundation

U.S. National Science Foundation

Directorate for Social, Behavioral and Economic Sciences

Directorate for Biological Sciences

Directorate for Computer and Information Science and Engineering

Directorate for STEM Education

Directorate for Engineering

Directorate for Geosciences

Directorate for Mathematical and Physical Sciences

Office of Integrative Activities

Full Proposal Deadline(s) (due by 5 p.m. submitting organization’s local time):

     April 17, 2025

     March 06, 2026

Important Information And Revision Notes

This revision adds For-profit organizations and Tribal Nations to the types of organizations eligible to submit proposals.

Any proposal submitted in response to this solicitation should be submitted in accordance with the NSF Proposal & Award Policies & Procedures Guide (PAPPG) that is in effect for the relevant due date to which the proposal is being submitted. The NSF PAPPG is regularly revised and it is the responsibility of the proposer to ensure that the proposal meets the requirements specified in this solicitation and

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

Executive Summary

This joint cybersecurity advisory (CSA) highlights a Russian state-sponsored cyber campaign targeting Western logistics entities and technology companies. This includes those involved in the coordination, transport, and delivery of foreign assistance to Ukraine. Since 2022, Western logistics entities and IT companies have faced an elevated risk of targeting by the Russian General Staff Main Intelligence Directorate (GRU) 85th Main Special Service Center (85th GTsSS), military unit 26165—tracked in the cybersecurity community under several names (see “Cybersecurity Industry Tracking”). The actors’ cyber espionage-oriented campaign, targeting technology companies and logistics entities, uses a mix of previously disclosed tactics, techniques, and procedures (TTPs). The authoring agencies expect similar targeting and TTP use to continue.

Executives and network defenders at logistics entities and technology companies should recognize the elevated threat of unit 26165 targeting, increase monitoring and threat hunting for known TTPs and indicators of compromise (IOCs), and posture network defenses with a presumption of targeting.

This cyber espionage-oriented campaign targeting logistics entities and technology companies uses a mix of previously disclosed TTPs and is likely connected to these actors’ wide scale targeting of IP cameras in Ukraine and bordering NATO nations.

The following authors and co-sealers are releasing this CSA:

United States National Security Agency (NSA) United States Federal Bureau of Investigation (FBI) United Kingdom National Cyber Security Centre (NCSC-UK) Germany Federal

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

Chemists funded by the U.S. National Science Foundation have developed a new process to synthesize a plant-based compound that shows effectiveness against triple-negative breast cancer cells. According to the American Cancer Society, triple-negative breast cancer is one of the most aggressive types of breast cancer and accounts for 10-15% of all breast cancer cases. The process also increases the compound’s potency against these cancer cells and provides a method for it to be mass-produced to enable further testing as a potential treatment.

The new process can also be used broadly to help discover new medicines by synthesizing and testing other complex organic compounds. The findings were achieved by Emory University researchers and published in The Journal of the American Chemical Society.

The compound — called phaeocaulisin A — is extracted from the flowering plant Curcuma phaeocaulis, a relative of ginger and turmeric used for centuries in traditional medicine.

“We not only efficiently replicated a complex natural product, we also improved upon it by turning it into a more potent compound,” says Mingji Dai, professor of chemistry and co-lead of the study.

“It is only the first step in a long process,” says Yong Wan, professor of pharmacology and chemical biology and study co-lead. “But the new analogue of phaeocaulisin A we have reported shows promising efficacy against triple-negative breast cancer cells, which are very aggressive and

Click this link to continue reading the article on the source website.