RSS Feed Source: MIT Technology Review

For all the excitement around GPUs—the workhorses of today’s AI revolution—the central processing unit (CPU) remains the backbone of high-performance computing (HPC). CPUs still handle 80% to 90% of HPC workloads globally, powering everything from climate modeling to semiconductor design. Far from being eclipsed, they’re evolving in ways that make them more competitive, flexible, and indispensable than ever.

The competitive landscape around CPUs has intensified. Once dominated almost exclusively by Intel’s x86 chips, the market now includes powerful alternatives based on ARM and even emerging architectures like RISC-V. Flagship examples like Japan’s Fugaku supercomputer demonstrate how CPU innovation is pushing performance to new frontiers. Meanwhile, cloud providers like Microsoft and AWS are developing their own silicon, adding even more diversity to the ecosystem.

What makes CPUs so enduring? Flexibility, compatibility, and cost efficiency are key. As Evan Burness of Microsoft Azure points out,

Click this link to continue reading the article on the source website.

RSS Feed Source: MIT Technology Review

A team of physicists has discovered that virtual charges, which exist only during brief interactions with light, play a critical role in ultrafast material responses. Using attosecond pulses on diamonds, they showed these hidden carriers significantly influence optical behavior. The findings could accelerate the development of petahertz-speed devices, unlocking a new era of ultrafast electronics.

Click this link to continue reading the article on the source website.