RSS feed source: National Science Foundation

The U.S. National Science Foundation today announced a new funding opportunity to support research and technology development that will improve the next generation of wireless communication systems known as NextG.     In collaboration with industry, other government agencies, and international partners, the NSF Verticals-enabling Intelligent NEtwork  Systems (NSF VINES) program will invest up to $100 million to accelerate performance and capabilities of next-generation (NextG) advanced intelligent network systems  spanning the user-edge-core-cloud continuum. 

“NSF VINES will enhance U.S. competitiveness in advanced telecommunications technologies, including NextG wireless telecommunications and emerging potential NextG vertical industries, and prepare the American workforce for jobs available now and in the future,” said Brian Stone, performing the duties of the NSF Director.

“This important investment from NSF, in collaboration with industry and other government agencies, will help strengthen U.S. leadership and ensure the American people reap the benefits in areas such as self-driving cars, advanced manufacturing, energy infrastructure, and beyond,” said Dr. Lynne Parker, Principal Deputy Director of The White House Office of Science and Technology Policy. 

NSF VINES is in partnership with several major industry organizations and U.S. federal agencies, including Ericsson, Intel, Qualcomm, the U.S. Department of Homeland Security, U.S. Department of Defense Office of the Under Secretary for Research and Engineering, and U.S. Department of Commerce National Institute of Standards and Technology, as well as international partners from

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

Despite advances in machine vision, processing visual data requires substantial computing resources and energy, limiting deployment in edge devices. Now, researchers from Japan have developed a self-powered artificial synapse that distinguishes colors with high resolution across the visible spectrum, approaching human eye capabilities. The device, which integrates dye-sensitized solar cells, generates its electricity and can perform complex logic operations without additional circuitry, paving the way for capable computer vision systems integrated in everyday devices.

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

Researchers have discovered that the mixing of small particles between two solid electrolytes can generate an effect called a ‘space charge layer,’ an accumulation of electric charge at the interface between the two materials. The finding could aid the development of batteries with solid electrolytes, called solid-state batteries, for applications including mobile devices and electric vehicles.

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

Researchers have engineered a laser device smaller than a penny that they say could power everything from the LiDAR systems used in self-driving vehicles to gravitational wave detection, one of the most delicate experiments in existence to observe and understand our universe.

Click this link to continue reading the article on the source website.