RSS Feed Source: MIT Technology Review

Microsoft announced today that it has made significant progress in its 20-year quest to make topological quantum bits, or qubits—a special approach to building quantum computers that could make them more stable and easier to scale up. 

Researchers and companies have been working for years to build quantum computers, which could unlock dramatic new abilities to simulate complex materials and discover new ones, among many other possible applications. 

To achieve that potential, though, we must build big enough systems that are stable enough to perform computations. Many of the technologies being explored today, such as the superconducting qubits pursued by Google and IBM, are so delicate that the resulting systems need to have many extra qubits to correct errors. 

Microsoft has long been working on an alternative that could cut down on the overhead by using components that are far more stable. These components,

Click this link to continue reading the article on the source website.

RSS Feed Source: MIT Technology Review

In trying to make sense of the wrecking ball that is Elon Musk and President Trump’s DOGE, it may be helpful to think about the Evil Housekeeper Problem. It’s a principle of computer security roughly stating that once someone is in your hotel room with your laptop, all bets are off. Because the intruder has physical access, you are in much more trouble. And the person demanding to get into your computer may be standing right beside you.

So who is going to stop the evil housekeeper from plugging a computer in and telling IT staff to connect it to the network?

What happens if someone comes in and tells you that you’ll be fired unless you reveal the authenticator code from your phone, or sign off on a code change, or turn over your PIV card, the Homeland Security–approved smart card used to

Click this link to continue reading the article on the source website.

RSS Feed Source: MIT Technology Review

A Canadian startup called Xanadu has built a new quantum computer it says can be easily scaled up to achieve the computational power needed to tackle scientific challenges ranging from drug discovery to more energy-efficient machine learning.

Aurora is a “photonic” quantum computer, which means it crunches numbers using photonic qubits—information encoded in light. In practice, this means combining and recombining laser beams on multiple chips using lenses, fibers, and other optics according to an algorithm. Xanadu’s computer is designed in such a way that the answer to an algorithm it executes corresponds to the final number of photons in each laser beam. This approach differs from one used by Google and IBM, which involves encoding information in properties of superconducting circuits. 

Aurora has a modular design that consists of four similar units, each installed in a standard server rack that is slightly taller

Click this link to continue reading the article on the source website.

RSS Feed Source: MIT Technology Review

On January 8, Nvidia CEO Jensen Huang jolted the stock market by saying that practical quantum computing is still 15 to 30 years away, at the same time suggesting those computers will need Nvidia GPUs in order to implement the necessary error correction. 

However, history shows that brilliant people are not immune to making mistakes. Huang’s predictions miss the mark, both on the timeline for useful quantum computing and on the role his company’s technology will play in that future.

I’ve been closely following developments in quantum computing as an investor, and it’s clear to me that it is rapidly converging on utility. Last year, Google’s Willow device demonstrated that there is a promising pathway to scaling up to bigger and bigger computers. It showed that errors can be reduced exponentially as the number of quantum bits, or qubits, increases. It also ran a

Click this link to continue reading the article on the source website.