RSS feed source: National Science Foundation

The computing world is celebrating a major milestone as Andrew Barto, professor emeritus at the University of Massachusetts Amherst, and Richard Sutton, professor of computer science at the University of Alberta, Canada, have been awarded the 2024 Association for Computing Machinery A.M. Turing Award — often called the “Nobel Prize of computing” — for “developing the conceptual and algorithmic foundations of reinforcement learning.”

The legacy in reinforcement learning

Barto and Sutton are widely recognized as pioneers of the modern computational reinforcement learning (RL), a field that addresses the challenge of learning how to act based on evaluative feedback. Their work has laid the conceptual and algorithmic foundations of RL, shaping the future of artificial intelligence and decision-making systems.

The influence of RL extends across multiple disciplines, including computer science (machine learning), engineering (optimal control), mathematics (operations research), neuroscience (optimal decision-making), psychology (classical and operant conditioning) and economics (rational choice theory). Researchers in these fields continue to be profoundly shaped by the contributions of Sutton and Barto.

From NSF Grants to AI Breakthroughs

Barto’s contributions were made possible through a series of U.S. National Science Foundation-funded projects that sustained AI research long before its recent boom. His research was supported through grants from NSF programs including the National Robotics Initiative, Robust Intelligence, Collaborative Research in Computation Neuroscience, Human-Centered Computing, Biological Information Technology and Systems, Artificial Intelligence and Cognitive

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

The computing world is celebrating a major milestone as Andrew Barto, professor emeritus at the University of Massachusetts Amherst, and Richard Sutton, professor of computer science at the University of Alberta, Canada, have been awarded the 2024 Association for Computing Machinery A.M. Turing Award — often called the “Nobel Prize of computing” — for “developing the conceptual and algorithmic foundations of reinforcement learning.”

The legacy in reinforcement learning

Barto and Sutton are widely recognized as pioneers of the modern computational reinforcement learning (RL), a field that addresses the challenge of learning how to act based on evaluative feedback. Their work has laid the conceptual and algorithmic foundations of RL, shaping the future of artificial intelligence and decision-making systems.

The influence of RL extends across multiple disciplines, including computer science (machine learning), engineering (optimal control), mathematics (operations research), neuroscience (optimal decision-making), psychology (classical and operant conditioning) and economics (rational choice theory). Researchers in these fields continue to be profoundly shaped by the contributions of Sutton and Barto.

From NSF Grants to AI Breakthroughs

Barto’s contributions were made possible through a series of U.S. National Science Foundation-funded projects that sustained AI research long before its recent boom. His research was supported through grants from NSF programs including the National Robotics Initiative, Robust Intelligence, Collaborative Research in Computation Neuroscience, Human-Centered Computing, Biological Information Technology and Systems, Artificial Intelligence and Cognitive

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

The manufacturing technique known as 3D printing, now being used everywhere, from aircraft manufacturers to public libraries, has never been more affordable or accessible. Biomedical engineering has particularly benefited from 3D printing as prosthetic devices can be produced and tested more rapidly than ever before. However, 3D printing still faces challenges when printing living tissues, partly due to their complexity and fragility.

Now, with support from the U.S. National Science Foundation, a research team at Boston University (BU) and the Wyss Institute at Harvard University has pioneered the use of gallium, a metal that can be molded at room temperature, to create tissue structures in various shapes and sizes.

This innovative approach to fabrication, engineered sacrificial capillary pumps for evacuation (ESCAPE), was highlighted in a recent study published in Nature, where the team used gallium casts to mold biomaterials. The scaffolds left behind by these casts are then filled with cells cultured to form tissue structures. Vascular structures were some of the first produced using ESCAPE, particularly because of the challenges faced due to blood vessel complexity. Few techniques exist to build large (millimeter-scale) and small (micrometer-scale) structures in scaffolds made of natural materials, making this multiscale fabrication capability a novel approach.

“ESCAPE can be used on several tissue architectures, but we started with vascular forms because blood vessel networks feature many different length scales,”

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

U.S. National Science Foundation-supported researchers published new findings suggesting a location where the Yellowstone Caldera could erupt, hundreds of thousands of years from now.

The Yellowstone Caldera is one of the largest volcanic systems on Earth. It lurks beneath Yellowstone National Park and touches three states: Idaho, Wyoming and Montana. Over the past two million years, the volcano significantly erupted three times, leaving behind calderas, or massive craters.

To better understand future eruptions, Ninfa Bennington, a volcanic seismologist with the U.S. Geological Survey, used magnetotelluric methods to identify four pots of magma stored underneath the Yellowstone Caldera.

Magnetotelluric instruments help scientists identify materials that can conduct electricity beneath Earth’s crust. The team used those instruments at over 100 measuring stations across the caldera to identify magma, which has a much higher conductivity than solid rocks.

Of the four magma-rich regions the team discovered, only the northeastern one will remain hot enough to keep magma liquid on a long-term scale and eventually erupt. Previous major eruptions took place in different locations across the caldera.

Click this link to continue reading the article on the source website.