RSS feed source: National Science Foundation

Although a leopard cannot change its spots, new research funded by the U.S. National Science Foundation uses the principles that govern patterns like leopard spots to understand biological processes at the nanoscale. The research, which combines physics, biology and theories first suggested by famed code breaker Alan Turing, increases knowledge of protein nanocluster formation and could enhance understanding of the causes of Emery-Dreifuss muscular dystrophy (EDMD) and lead to possible treatments.

The project probes the formation of nanoclusters made of a protein called emerin, which plays a role in the structure and function of the membrane around a cell’s nucleus. These clusters are extremely important in mechanotransduction, the process by which cells respond to mechanical forces like stretching or pressure. When mechanotransduction fails, it can lead to diseases like EDMD and other forms of muscular dystrophy. Understanding how emerin molecules form nanoclusters will aid in deciphering how the process can be disrupted and how disruptions can lead to disease.

While the way in which proteins come together has been studied for some time, the new research uses biophysical concepts to understand the biological processes. Specifically, the researchers used rules that control the formation of patterns proposed by Turing. Turing’s work provided mathematical rules that govern the formation of nanoclusters, working at a vastly different scale than leopard spots or zebra stripes.

The research was led

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

Funded by multiple grants from the U.S. National Science Foundation, researchers created a functional sponge that can soak up certain pollutants from water and then release them on demand, presenting a reusable and low-cost solution for cleaning storm runoff while simultaneously recovering valuable metals like zinc and copper, as well as phosphate.

Using surface iron oxide nanoparticles specialized for capturing specific contaminants, the sponge collects the minerals and then discharges them only when triggered by changes in pH, and it can be used multiple times. The findings were achieved by researchers at Northwestern University and published in the American Chemical Society’s journal Environmental Science and Technology Water.

“The technology can be used as a universal sorbent or ‘catch-all,’ or it can be tailored to certain groups of contaminants like metals, plastics or nutrients,” says Vinayak Dravid, a research author and Northwestern professor of materials science and engineering. In previous iterations, the sponge material has successfully pulled lead, microplastics and oil from water.

Industrial manufacturing and agriculture, in particular, experience mineral and fertilizer loss due to runoff, leaving valuable nonrenewable resources as pollutants in bodies of water. Those resources include heavy metals like zinc and copper and also phosphate.

Credit: Kelly Matuszewski, Northwestern University

Illustration showing how the sponge nanocomposite material recovers phosphate and metals from

Click this link to continue reading the article on the source website.

RSS feed source: National Science Foundation

In-brief analysis

May 5, 2025

Data source: AAA

Retail prices for regular grade gasoline in California are consistently higher than in any other state in the continental United States, often exceeding the national average by more than a dollar per gallon. Several factors contribute to this high price, including state taxes and fees, environmental requirements, special fuel requirements, and isolated petroleum markets.

Taxes and fees
The components of retail gasoline prices are taxes and fees, distribution and marketing, refining costs, and crude oil prices. Drivers in California pay the highest taxes at the pump, equivalent to $0.90 per gallon (gal) between local, state, and federal taxes as of March 2025.

Federal taxes—which are the same for each state—account for $0.18 of the $0.90/gal in taxes. The other $0.72/gal is made up of state excise tax

Click this link to continue reading the article on the source website.